Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 13: 297, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333417

RESUMO

The protein parkin, encoded by the PARK2 gene, is vital for mitochondrial homeostasis, and although it has been implicated in Parkinson's disease (PD), the disease mechanisms remain unclear. We have applied mass spectrometry-based proteomics to investigate the effects of parkin dysfunction on the mitochondrial proteome in human isogenic induced pluripotent stem cell-derived neurons with and without PARK2 knockout (KO). The proteomic analysis quantified nearly 60% of all mitochondrial proteins, 119 of which were dysregulated in neurons with PARK2 KO. The protein changes indicated disturbances in oxidative stress defense, mitochondrial respiration and morphology, cell cycle control, and cell viability. Structural and functional analyses revealed an increase in mitochondrial area and the presence of elongated mitochondria as well as impaired glycolysis and lactate-supported respiration, leading to an impaired cell survival in PARK2 KO neurons. This adds valuable insight into the effect of parkin dysfunction in human neurons and provides knowledge of disease-related pathways that can potentially be targeted for therapeutic intervention.

2.
J Neurosci ; 39(25): 4847-4863, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-30926746

RESUMO

The glutamate transporter GLT-1 is highly expressed in astrocytes but also in neurons, primarily in axon terminals. We generated a conditional neuronal GLT-1 KO using synapsin 1-Cre (synGLT-1 KO) to elucidate the metabolic functions of GLT-1 expressed in neurons, here focusing on the cerebral cortex. Both synaptosomal uptake studies and electron microscopic immunocytochemistry demonstrated knockdown of GLT-1 in the cerebral cortex in the synGLT-1 KO mice. Aspartate content was significantly reduced in cerebral cortical extracts as well as synaptosomes from cerebral cortex of synGLT-1 KO compared with control littermates. 13C-Labeling of tricarboxylic acid cycle intermediates originating from metabolism of [U-13C]-glutamate was significantly reduced in synGLT-1 KO synaptosomes. The decreased aspartate content was due to diminished entry of glutamate into the tricarboxylic acid cycle. Pyruvate recycling, a pathway necessary for full glutamate oxidation, was also decreased. ATP production was significantly increased, despite unaltered oxygen consumption, in isolated mitochondria from the synGLT-1 KO. The density of mitochondria in axon terminals and perisynaptic astrocytes was increased in the synGLT-1 KO. Intramitochondrial cristae density of synGLT-1 KO mice was increased, suggesting increased mitochondrial efficiency, perhaps in compensation for reduced access to glutamate. SynGLT-1 KO synaptosomes exhibited an elevated oxygen consumption rate when stimulated with veratridine, despite a lower baseline oxygen consumption rate in the presence of glucose. GLT-1 expressed in neurons appears to be required to provide glutamate to synaptic mitochondria and is linked to neuronal energy metabolism and mitochondrial function.SIGNIFICANCE STATEMENT All synaptic transmitters need to be cleared from the extracellular space after release, and transporters are used to clear glutamate released from excitatory synapses. GLT-1 is the major glutamate transporter, and most GLT-1 is expressed in astrocytes. Only 5%-10% is expressed in neurons, primarily in axon terminals. The function of GLT-1 in axon terminals remains unknown. Here, we used a conditional KO approach to investigate the significance of the expression of GLT-1 in neurons. We found multiple abnormalities of mitochondrial function, suggesting impairment of glutamate utilization by synaptic mitochondria in the neuronal GLT-1 KO. These data suggest that GLT-1 expressed in axon terminals may be important in maintaining energy metabolism and biosynthetic activities mediated by presynaptic mitochondria.


Assuntos
Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Homeostase/fisiologia , Mitocôndrias/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Animais , Ácido Aspártico/metabolismo , Córtex Cerebral/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Consumo de Oxigênio/fisiologia , Terminações Pré-Sinápticas/metabolismo , Sinapses/genética , Sinaptossomos/metabolismo
3.
Biochem Pharmacol ; 155: 92-101, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29940175

RESUMO

Soluble adenylate cyclase (sAC) is a non-plasma membrane-bound isoform of the adenylate cyclases signaling via the canonical second messenger, 3',5'-cyclic AMP (cAMP). sAC is involved in key physiological processes such as insulin release, sperm motility, and energy metabolism. Thus, sAC has attracted interest as a putative drug target and attempts have been made to develop selective inhibitors. Since sAC has a binding constant for its substrate, ATP, in the millimolar range, reductions in mitochondrial ATP production may be part of the mechanism-of-action of sAC inhibitors and the potential of these compounds to study the physiological outcomes of inhibition of sAC might be severely hampered by this. Here, we evaluate the effects of two commonly employed inhibitors, 2-OHE and KH7, on mitochondrial ATP production and energy metabolism. For comparison, we included a recently identified inhibitor of sAC, bithionol. Employing mitochondria isolated from mouse brain, we show that all three compounds are able to curb ATP production albeit via distinct mechanisms. Bithionol and KH7 mainly inhibit ATP production by working as a classical uncoupler whereas 2-OHE mainly works by decreasing mitochondrial respiration. These findings were corroborated by investigating energy metabolism in acute brain slices from mice. Since all three sAC inhibitors are shown to curb mitochondrial ATP production and affect energy metabolism, caution should be exercised when employed to study the physiological roles of sAC or for validating sAC as a drug target.


Assuntos
Trifosfato de Adenosina/antagonistas & inibidores , Inibidores de Adenilil Ciclases/farmacologia , Bitionol/farmacologia , Estradiol/análogos & derivados , Mitocôndrias/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Inibidores de Adenilil Ciclases/química , Adenilil Ciclases/metabolismo , Animais , Bitionol/química , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Relação Dose-Resposta a Droga , Estradiol/química , Estradiol/farmacologia , Feminino , Camundongos , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/fisiologia
4.
J Cereb Blood Flow Metab ; 38(10): 1754-1768, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-28621566

RESUMO

The enzyme glutamate dehydrogenase (GDH; Glud1) catalyzes the (reversible) oxidative deamination of glutamate to α-ketoglutarate accompanied by a reduction of NAD+ to NADH. GDH connects amino acid, carbohydrate, neurotransmitter and oxidative energy metabolism. Glutamine is a neurotransmitter precursor used by neurons to sustain the pool of glutamate, but glutamine is also vividly oxidized for support of energy metabolism. This study investigates the role of GDH in neuronal metabolism by employing the Cns- Glud1-/- mouse, lacking GDH in the brain (GDH KO) and metabolic mapping using 13C-labelled glutamine and glucose. We observed a severely reduced oxidative glutamine metabolism during glucose deprivation in synaptosomes and cultured neurons not expressing GDH. In contrast, in the presence of glucose, glutamine metabolism was not affected by the lack of GDH expression. Respiration fuelled by glutamate was significantly lower in brain mitochondria from GDH KO mice and synaptosomes were not able to increase their respiration upon an elevated energy demand. The role of GDH for metabolism of glutamine and the respiratory capacity underscore the importance of GDH for neurons particularly during an elevated energy demand, and it may reflect the large allosteric activation of GDH by ADP.


Assuntos
Metabolismo Energético/fisiologia , Glutamato Desidrogenase/metabolismo , Glutamina/metabolismo , Neurônios/metabolismo , Animais , Respiração Celular/fisiologia , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo
5.
J Neurosci Res ; 95(11): 2307-2320, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28316081

RESUMO

Metformin is an antidiabetic drug that is used daily by millions of patients worldwide. Metformin is able to cross the blood-brain barrier and has recently been shown to increase glucose consumption and lactate release in cultured astrocytes. However, potential effects of metformin on mitochondrial tricarboxylic acid (TCA) cycle metabolism in astrocytes are unknown. We investigated this by mapping 13 C labeling in TCA cycle intermediates and corresponding amino acids after incubation of primary rat astrocytes with [U-13 C]glucose. The presence of metformin did not compromise the viability of cultured astrocytes during 4 hr of incubation, but almost doubled cellular glucose consumption and lactate release. Compared with control cells, the presence of metformin dramatically lowered the molecular 13 C carbon labeling (MCL) of the cellular TCA cycle intermediates citrate, α-ketoglutarate, succinate, fumarate, and malate, as well as the MCL of the TCA cycle intermediate-derived amino acids glutamate, glutamine, and aspartate. In addition to the total molecular 13 C labeling, analysis of the individual isotopomers of TCA cycle intermediates confirmed a severe decline in labeling and a significant lowering in TCA cycling ratio in metformin-treated astrocytes. Finally, the oxygen consumption of mitochondria isolated from metformin-treated astrocytes was drastically reduced in the presence of complex I substrates, but not of complex II substrates. These data demonstrate that exposure to metformin strongly impairs complex I-mediated mitochondrial respiration in astrocytes, which is likely to cause the observed decrease in labeling of mitochondrial TCA cycle intermediates and the stimulation of glycolytic lactate production. © 2017 Wiley Periodicals, Inc.


Assuntos
Astrócitos/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Mitocôndrias/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Respiração Celular/efeitos dos fármacos , Respiração Celular/fisiologia , Células Cultivadas , Ciclo do Ácido Cítrico/fisiologia , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/fisiologia , Ratos , Ratos Wistar
6.
Neurochem Res ; 42(1): 191-201, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27545309

RESUMO

Synaptosomes prepared from various aged and gene modified experimental animals constitute a valuable model system to study pre-synaptic mechanisms. Synaptosomes were isolated from whole brain and the XFe96 extracellular flux analyzer (Seahorse Bioscience) was used to study mitochondrial respiration and glycolytic rate in presence of different substrates. Mitochondrial function was tested by sequentially exposure of the synaptosomes to the ATP synthase inhibitor, oligomycin, the uncoupler FCCP (carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone) and the electron transport chain inhibitors rotenone and antimycin A. The synaptosomes exhibited intense respiratory activity using glucose as substrate. The FCCP-dependent respiration was significantly higher with 10 mM glucose compared to 1 mM glucose. Synaptosomes also readily used pyruvate as substrate, which elevated basal respiration, activity-dependent respiration induced by veratridine and the respiratory response to uncoupling compared to that obtained with glucose as substrate. Also lactate was used as substrate by synaptosomes but in contrast to pyruvate, mitochondrial lactate mediated respiration was comparable to respiration using glucose as substrate. Synaptosomal respiration using glutamate and glutamine as substrates was significantly higher compared to basal respiration, whereas oligomycin-dependent and FCCP-induced respiration was lower compared to the responses obtained in the presence of glucose as substrate. We provide evidence that synaptosomes are able to use besides glucose and pyruvate also the substrates lactate, glutamate and glutamine to support their basal respiration. Veratridine was found to increase respiration supported by glucose, pyruvate, lactate and glutamine and FCCP was found to increase respiration supported by glucose, pyruvate and lactate. This was not the case when glutamate was the only energy substrate.


Assuntos
Respiração Celular/fisiologia , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Ácido Láctico/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Antimicina A/farmacologia , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Respiração Celular/efeitos dos fármacos , Camundongos , Terminações Pré-Sinápticas/efeitos dos fármacos , Rotenona/farmacologia
7.
Neurochem Int ; 102: 13-21, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27894844

RESUMO

Tyrphostin 23 (T23) is a well-known inhibitor of protein tyrosine kinases and has been considered as potential anti-cancer drug. T23 was recently reported to acutely stimulate the glycolytic flux in primary cultured astrocytes. To investigate whether T23 also affects the tricarboxylic acid (TCA) cycle, we incubated primary rat astrocyte cultures with [U-13C]glucose in the absence or the presence of 100 µM T23 for 2 h and analyzed the 13C metabolite pattern. These incubation conditions did not compromise cell viability and confirmed that the presence of T23 doubled glycolytic lactate production. In addition, T23-treatment strongly increased the molecular carbon labeling of the TCA cycle intermediates citrate, succinate, fumarate and malate, and significantly increased the incorporation of 13C-labelling into the amino acids glutamate, glutamine and aspartate. These results clearly demonstrate that, in addition to glycolysis, also the mitochondrial TCA cycle is strongly accelerated after exposure of astrocytes to T23, suggesting that a protein tyrosine kinase may be involved in the regulation of the TCA cycle in astrocytes.


Assuntos
Astrócitos/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Tirfostinas/farmacologia , Animais , Ácido Aspártico/metabolismo , Astrócitos/metabolismo , Células Cultivadas , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/fisiologia , Ratos Wistar
8.
J Neurosci Res ; 93(7): 1127-37, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25354694

RESUMO

To clarify discrepancies in the literature on the adverse effects of hydrogen peroxide on neurons, this study investigated the application of this peroxide to cultured cerebellar granule neurons with six assays frequently used to test for viability. Cultured neurons efficiently cleared exogenous H2O2. Although viability was not affected by exposure to 10 µM hydrogen peroxide, an exposure to the peroxide in higher concentrations rapidly lowered, within 15 min, the cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium bromide (MTT) reduction capacity to 53% ± 1% (100 µM) and 31% ± 1% (1,000 µM) and the 3-amino-7-dimethylamino-2-methyl-phenazine hydrochloride (neutral red; NR) uptake to 84% ± 6% (100 µM) and 33% ± 1% (1,000 µM) of control cells. The release of glycolytically generated lactate was stopped within 30 min in neurons treated with 1,000 µM peroxide. In contrast, even hours after peroxide application, the cell morphology, the number of propidium iodide-positive cells, and the extracellular activity of the cytosolic enzyme lactate dehydrogenase (LDH) were not significantly altered. The rapid loss in MTT reduction and NR uptake after exposure of neurons to H2O2 for 5 or 15 min correlated well with a strongly compromised MTT reduction and a very high extracellular LDH activity observed after further incubation in peroxide-free medium for a total incubation period of 24 hr. These data demonstrate that cultured neurons do not recover from damage that is inflicted by a short exposure to H2O2 and that the rapid losses in the capacities of neurons for MTT reduction and NR uptake are good predictors of delayed cell damage.


Assuntos
Peróxido de Hidrogênio/toxicidade , Neurônios/efeitos dos fármacos , Oxidantes/toxicidade , Análise de Variância , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cerebelo/citologia , Líquido Extracelular/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Oxidantes/metabolismo , Ratos , Ratos Wistar , Sais de Tetrazólio/metabolismo , Tiazóis/metabolismo
9.
Neurochem Res ; 40(12): 2570-82, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25428182

RESUMO

Astrocytes have a pivotal role in brain as partners of neurons in homeostatic and metabolic processes. Astrocytes also protect other types of brain cells against the toxicity of reactive oxygen species and are considered as first line of defence against the toxic potential of xenobiotics. A key component in many of the astrocytic detoxification processes is the tripeptide glutathione (GSH) which serves as electron donor in the GSH peroxidase-catalyzed reduction of peroxides. In addition, GSH is substrate in the detoxification of xenobiotics and endogenous compounds by GSH-S-transferases which generate GSH conjugates that are efficiently exported from the cells by multidrug resistance proteins. Moreover, GSH reacts with the reactive endogenous carbonyls methylglyoxal and formaldehyde to intermediates which are substrates of detoxifying enzymes. In this article we will review the current knowledge on the GSH metabolism of astrocytes with a special emphasis on GSH-dependent detoxification processes.


Assuntos
Astrócitos/metabolismo , Glutationa/metabolismo , Xenobióticos/metabolismo , Xenobióticos/toxicidade , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo
10.
Neurochem Res ; 40(3): 561-71, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25503647

RESUMO

Arsenate is an environmental pollutant which contaminates the drinking water of millions of people worldwide. Numerous in vitro studies have investigated the toxicity of arsenate for a large number of different cell types. However, despite the known neurotoxic potential of arsenicals, little is known so far about the consequences of an exposure of neurons to arsenate. To investigate acute effects of arsenate on the viability and the glutathione (GSH) metabolism of neurons, we have exposed primary rat cerebellar granule neuron cultures to arsenate. Incubation of neurons for up to 6 h with arsenate in concentrations of up to 10 mM did not acutely compromise the cell viability, although the cells accumulated substantial amounts of arsenate. However, exposure to arsenate caused a time- and concentration-dependent increase in the export of GSH from viable neurons with significant effects observed for arsenate in concentrations above 0.3 mM. The arsenate-induced stimulation of GSH export was abolished upon removal of arsenate and completely prevented by MK571, an inhibitor of the multidrug resistance protein 1. These results demonstrate that arsenate is not acutely toxic to neurons but can affect the neuronal GSH metabolism by stimulating GSH export.


Assuntos
Arseniatos/farmacologia , Sobrevivência Celular/fisiologia , Cerebelo/citologia , Cerebelo/metabolismo , Glutationa/metabolismo , Neurônios/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cerebelo/efeitos dos fármacos , Relação Dose-Resposta a Droga , Neurônios/efeitos dos fármacos , Ratos , Ratos Wistar
11.
Neurochem Res ; 39(5): 883-92, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24664418

RESUMO

Antiretroviral protease inhibitors are crucial components of the antiretroviral combination therapy that is successfully used for the treatment of patients with HIV infection. To test whether such protease inhibitors affect the glutathione (GSH) metabolism of neurons, cultured cerebellar granule neurons were exposed to indinavir, nelfinavir, lopinavir or ritonavir. In low micromolar concentrations these antiretroviral protease inhibitors did not acutely compromise the cell viability, but caused a time- and concentration-dependent increase in the accumulation of extracellular GSH which was accompanied by a matching loss in cellular GSH. The stimulating effect by indinavir, lopinavir and ritonavir on GSH export was immediately terminated upon removal of the protease inhibitors, while the nelfinavir-induced stimulated GSH export persisted after washing the cells. The stimulation of neuronal GSH export by protease inhibitors was completely prevented by MK571, an inhibitor of the multidrug resistance protein 1, suggesting that this transporter mediates the accelerated GSH export during exposure of neurons to protease inhibitors. These data suggest that alterations in brain GSH metabolism should be considered as potential side-effects of a treatment with antiretroviral protease inhibitors.


Assuntos
Glutationa/metabolismo , Inibidores da Protease de HIV/farmacologia , Neurônios/metabolismo , Células Cultivadas , Indinavir/farmacologia , Lopinavir/farmacologia , Nelfinavir/farmacologia , Neurônios/efeitos dos fármacos , Ritonavir/farmacologia
12.
Free Radic Biol Med ; 70: 33-44, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24524999

RESUMO

Hydrogen peroxide is a normal by-product of cellular metabolism that in higher concentrations can cause oxidative stress. Cultured cerebellar granule neurons efficiently disposed of micromolar concentrations of hydrogen peroxide with half-times in the minute range in a process that predominately involved catalase. Application of up to 100 µM hydrogen peroxide did not affect the cell viability for up to 4h, but caused a time- and concentration-dependent increase in the extracellular glutathione (GSH) content that was accompanied by a matching decrease in the cellular GSH content. Hydrogen peroxide at 100 µM stimulated maximally the GSH export from viable neurons, but did not affect GSH export from cultured astrocytes. The peroxide-induced extracellular GSH accumulation from neurons was lowered by 70% in the presence of MK571, an inhibitor of multidrug resistance protein (Mrp) 1. The extracellular GSH content determined after 4h of incubation was already significantly increased after a 5-min exposure of neurons to hydrogen peroxide and became maximal after 15 min of peroxide application. These data demonstrate that just a short exposure of viable cerebellar granule neurons to micromolar concentrations of hydrogen peroxide stimulates a prolonged Mrp1-mediated export of cellular GSH. This process may compromise the antioxidative potential of neurons and increase their sensitivity toward drugs and toxins.


Assuntos
Glutationa/metabolismo , Peróxido de Hidrogênio/farmacologia , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/metabolismo , Neurônios/efeitos dos fármacos , Ratos
13.
Biochem Soc Trans ; 41(6): 1588-92, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24256259

RESUMO

Astrocytes are considered key regulators of the iron metabolism of the brain. These cells are able to rapidly accumulate iron ions and various iron-containing compounds, store iron efficiently in ferritin and also export iron. The present short review summarizes our current knowledge of the molecular mechanisms involved in the handling of iron by astrocytes. Cultured astrocytes efficiently take up iron as ferrous or ferric iron ions or as haem by specific iron transport proteins in their cell membrane. In addition, astrocytes accumulate large amounts of iron oxide nanoparticles by endocytotic mechanisms. Despite the rapid accumulation of high amounts of iron from various iron-containing sources, the viability of astrocytes is hardly affected. A rather slow liberation of iron from accumulated haem or iron oxide nanoparticles as well as the strong up-regulation of the synthesis of the iron storage protein ferritin are likely to contribute to the high resistance of astrocytes to iron toxicity. The efficient uptake of extracellular iron by cultured astrocytes as well as their strong up-regulation of ferritin after iron exposure also suggests that brain astrocytes deal well with an excess of iron and protect the brain against iron-mediated toxicity.


Assuntos
Astrócitos/metabolismo , Encéfalo/citologia , Compostos Férricos/metabolismo , Ferro/metabolismo , Nanopartículas/metabolismo , Animais , Encéfalo/metabolismo , Humanos
14.
J Neurochem ; 125(2): 260-72, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23356791

RESUMO

Formaldehyde is endogenously produced in the human body and brain levels of this compound are elevated in neurodegenerative conditions. Although the toxic potential of an excess of formaldehyde has been studied, little is known on the molecular mechanisms underlying its neurotoxicity as well as on the ability of neurons to metabolize formaldehyde. To address these topics, we have used cerebellar granule neuron cultures as model system. These cultures express mRNAs of various enzymes that are involved in formaldehyde metabolism and were remarkably resistant toward acute formaldehyde toxicity. Cerebellar granule neurons metabolized formaldehyde with a rate of around 200 nmol/(h × mg) which was accompanied by significant increases in the cellular and extracellular concentrations of formate. In addition, formaldehyde application significantly increased glucose consumption, almost doubled the rate of lactate release from viable neurons and strongly accelerated the export of the antioxidant glutathione. The latter process was completely prevented by inhibition of the known glutathione exporter multidrug resistance protein 1. These data indicate that cerebellar granule neurons are capable of metabolizing formaldehyde and that the neuronal glycolysis and glutathione export are severely affected by the presence of formaldehyde.


Assuntos
Formaldeído/metabolismo , Glutationa/metabolismo , Ácido Láctico/biossíntese , Neurônios/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Formaldeído/toxicidade , Neurônios/efeitos dos fármacos , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Nanoscale ; 5(3): 1034-46, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23255050

RESUMO

Iron oxide nanoparticles (IONP) are currently being studied as green magnet resonance imaging (MRI) contrast agents. They are also used in huge quantities for environmental remediation and water treatment purposes, although very little is known on the consequences of such applications for organisms and ecosystems. In order to address these questions, we synthesised polyvinylpyrrolidone-coated IONP, characterised the particle dispersion in various media and investigated the consequences of an IONP exposure using an array of biochemical and biological assays. Several theoretical approaches complemented the measurements. In aqueous dispersion IONP had an average hydrodynamic diameter of 25 nm and were stable over six days in most test media, which could also be predicted by stability modelling. The particles were tested in concentrations of up to 100 mg Fe per L. The activity of the enzymes glutathione reductase and acetylcholine esterase was not affected, nor were proliferation, morphology or vitality of mammalian OLN-93 cells although exposure of the cells to 100 mg Fe per L increased the cellular iron content substantially. Only at this concentration, acute toxicity tests with the freshwater flea Daphnia magna revealed slightly, yet insignificantly increased mortality. Two fundamentally different bacterial assays, anaerobic activated sludge bacteria inhibition and a modified sediment contact test with Arthrobacter globiformis, both rendered results contrary to the other assays: at the lowest test concentration (1 mg Fe per L), IONP caused a pronounced inhibition whereas higher concentrations were not effective or even stimulating. Preliminary and prospective risk assessment was exemplified by comparing the application of IONP with gadolinium-based nanoparticles as MRI contrast agents. Predicted environmental concentrations were modelled in two different scenarios, showing that IONP could reduce the environmental exposure of toxic Gd-based particles by more than 50%. Application of the Swiss "Precautionary Matrix for Synthetic Nanomaterials" rendered a low precautionary need for using our IONP as MRI agents and a higher one when using them for remediation or water treatment. Since IONP and (considerably more reactive) zerovalent iron nanoparticles are being used in huge quantities for environmental remediation purposes, it has to be ascertained that these particles pose no risk to either human health or to the environment.


Assuntos
Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Química Verde/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidade , Modelos Químicos , Água/química , Animais , Simulação por Computador , Humanos , Teste de Materiais , Tamanho da Partícula , Solubilidade
16.
Neurochem Res ; 38(2): 227-39, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23224777

RESUMO

Metal-containing nanoparticles (NPs) are currently used for various biomedical applications. Since such NPs are able to enter the brain, the cells of this organ have to deal with NPs and with NP-derived metal ions. In brain, astrocytes are considered to play a key function in regulating metal homeostasis and in protecting other brain cells against metal toxicity. Thus, among the different types of brain cells, especially astrocytes are of interest regarding the uptake and the handling of metal-containing NPs. This article summarizes the current knowledge on the consequences of an exposure of astrocytes to NPs. Special focus will be given to magnetic iron oxide nanoparticles (IONPs) and silver nanoparticles (AgNPs), since the biocompatibility of these NPs has been studied for astrocytes in detail. Cultured astrocytes efficiently accumulate IONPs and AgNPs in a time-, concentration- and temperature-dependent manner by endocytotic processes. Astrocytes are neither acutely damaged by the exposure to high concentrations of NPs nor by the prolonged intracellular presence of large amounts of accumulated NPs. Although metal ions are liberated from accumulated NPs, NP-derived iron and silver ions are not exported from astrocytes but are rather stored in proteins such as ferritin and metallothioneins which are synthesized in NP-treated astrocytes. The efficient accumulation of large amounts of metal-containing NPs and the upregulation of proteins that safely store NP-derived metal ions suggest that astrocytes protect the brain against the potential toxicity of metal-containing NPs.


Assuntos
Astrócitos/química , Astrócitos/metabolismo , Compostos Férricos/química , Prata/química , Animais , Células Cultivadas , Compostos Férricos/metabolismo , Humanos , Nanopartículas Metálicas/análise , Nanopartículas Metálicas/química , Prata/metabolismo
17.
Acta Biomater ; 8(10): 3832-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22750736

RESUMO

To investigate the cellular consequences of a prolonged cellular presence of large amounts of iron oxide nanoparticles (IONPs) as well as the fate of such particles in brain cells, cultured primary astrocytes were loaded for 4h with dimercaptosuccinate-coated IONPs. Subsequently, the IONP-treated cells were incubated for up to 7 days in IONP-free medium and the cell viability, metabolic parameters and iron metabolism of the cells were investigated. Despite an up to 100-fold elevated specific cellular iron content, IONP-loaded cells remained viable throughout the 7 day main incubation and did not show any substantial alteration in glucose and glutathione metabolism. During the incubation, the high cellular iron content of IONP-loaded astrocytes remained almost constant. Electron microscopy revealed that after 7 days of incubation most of the cellular iron was still present in IONP-filled vesicles. However, the transient appearance of reactive oxygen species (ROS) as well as a strong increase in cellular levels of the iron storage protein ferritin suggest that at least some low-molecular-weight iron was liberated from the accumulated IONPs. These results demonstrate that even the prolonged presence of large amounts of accumulated IONPs does not harm astrocytes and that these cells store IONP-derived iron in ferritin.


Assuntos
Astrócitos/metabolismo , Encéfalo/citologia , Compostos Férricos/farmacologia , Ferritinas/metabolismo , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/ultraestrutura , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Meios de Cultura , Glutationa/metabolismo , Ferro/metabolismo , Ácido Láctico/biossíntese , Nanopartículas/ultraestrutura , Ratos , Ratos Wistar
18.
Apoptosis ; 17(2): 143-53, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22109881

RESUMO

Hepatocyte death due to apoptosis is a hallmark of almost every liver disease. Manipulation of cell death regulatory steps during the apoptotic process is therefore an obvious goal of biomedical research. To clarify whether metabolic changes occur prior to the characteristic apoptotic events, we used ex vivo multinuclear NMR-spectroscopy to study metabolic pathways of [U-(13)C]glucose in mouse liver during Fas-induced apoptosis. We addressed whether these changes could be associated with protection against apoptosis afforded by Epidermal Growth Factor (EGF). Our results show that serum alanine and aspartate aminotransferase levels, caspase-3 activity, BID cleavage and changes in cellular energy stores were not observed before 3 h following anti-Fas injection. However, as early as 45 min after anti-Fas treatment, we observed upregulation of carbon entry (i.e. flux) from glucose into the Krebs-cycle via pyruvate dehydrogenase (PDH) and pyruvate carboxylase (PC) (up to 139% and 123% of controls, respectively, P < 0.001). This was associated with increased glutathione synthesis. EGF treatment significantly attenuated Fas-induced apoptosis, liver injury and the late decrease in energy stores, as well as the early fluxes through PDH and PC which were comparable to untreated controls. Using ex vivo multinuclear NMR-spectroscopic analysis, we have shown that Fas receptor activation in mouse liver time-dependently affects specific metabolic pathways of glucose. These early upregulations in glucose metabolic pathways occur prior to any visible signs of apoptosis and may have the potential to contribute to the initiation of apoptosis by maintaining mitochondrial energy production and cellular glutathione stores.


Assuntos
Apoptose , Glucose/metabolismo , Hepatócitos/metabolismo , Mitocôndrias Hepáticas/metabolismo , Receptor fas/antagonistas & inibidores , Receptor fas/metabolismo , Animais , Anticorpos/administração & dosagem , Anticorpos/imunologia , Apoptose/efeitos dos fármacos , Fator de Crescimento Epidérmico/administração & dosagem , Glutationa/metabolismo , Hepatócitos/patologia , Hepatócitos/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Oxirredução , Regulação para Cima , Receptor fas/imunologia
19.
Acta Biomater ; 7(11): 3946-54, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21763792

RESUMO

Magnetic iron oxide nanoparticles (IONPs) have been used for a variety of neurobiological applications, although little is yet known as to the fate of such particles in brain cells. To address these questions, we have exposed oligodendroglial OLN-93 cells to dimercaptosuccinate-coated IONPs. Treatment of the cells strongly increased the specific cellular iron content proportional to the IONP concentrations applied (0-1000 µM total iron as IONPs) up to 300-fold, but did not cause any acute cytotoxicity or induce oxidative stress. To investigate the potential of OLN-93 cells to liberate iron from the accumulated IONPs, we have studied the upregulation of the iron storage protein ferritin and the cell proliferation as cellular processes that depend on the availability of low-molecular-weight iron. The presence of IONPs caused a concentration-dependent increase in the amount of cellular ferritin and partially bypassed the inhibition of cell proliferation by the iron chelator deferoxamine. These data demonstrate that viable OLN-93 cells efficiently take up IONPs and suggest that these cells are able to use iron liberated from accumulated IONPs for their metabolism.


Assuntos
Compostos Férricos/farmacologia , Ferritinas/biossíntese , Nanopartículas de Magnetita , Oligodendroglia/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Desferroxamina/farmacologia , Humanos , Oligodendroglia/citologia , Sideróforos/farmacologia
20.
Nanotechnology ; 22(14): 145101, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21346306

RESUMO

Magnetic iron oxide nanoparticles (Fe-NP) are currently considered for various diagnostic and therapeutic applications in the brain. However, little is known on the accumulation and biocompatibility of such particles in brain cells. We have synthesized and characterized dimercaptosuccinic acid (DMSA) coated Fe-NP and have investigated their uptake by cultured brain astrocytes. DMSA-coated Fe-NP that were dispersed in physiological medium had an average hydrodynamic diameter of about 60 nm. Incubation of cultured astrocytes with these Fe-NP caused a time- and concentration-dependent accumulation of cellular iron, but did not lead within 6 h to any cell toxicity. After 4 h of incubation with 100-4000 µM iron supplied as Fe-NP, the cellular iron content reached levels between 200 and 2000 nmol mg⁻¹ protein. The cellular iron content after exposure of astrocytes to Fe-NP at 4 °C was drastically lowered compared to cells that had been incubated at 37 °C. Electron microscopy revealed the presence of Fe-NP-containing vesicles in cells that were incubated with Fe-NP at 37 °C, but not in cells exposed to the nanoparticles at 4 °C. These data demonstrate that cultured astrocytes efficiently take up DMSA-coated Fe-NP in a process that appears to be saturable and strongly depends on the incubation temperature.


Assuntos
Astrócitos/metabolismo , Encéfalo/citologia , Endocitose , Nanopartículas de Magnetita , Succímero/química , Succímero/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Astrócitos/ultraestrutura , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Sobrevivência Celular , Células Cultivadas , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestrutura , Espaço Intracelular/metabolismo , Ferro/metabolismo , Cinética , Luz , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Ratos , Ratos Wistar , Espalhamento de Radiação , Espectrometria por Raios X , Eletricidade Estática , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...